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Overview

I Stochastic partial differential equations (SPDE)

I Material failure problem

I Asymptotic analysis

I Rare-event simulations
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Gaussian Random Field

I Probability space (Ω,F ,P)

I f : T ×Ω→ R, f (t, ω), short form: f (t).

I (t1, ..., tn) ⊂ T , (f (t1), ..., f (tn)) is a multivariate Gaussian
random vector.
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Interesting quantities

I The tail probabilities of functions of Γ(f (·))

I The supremum norm

Γ(f ) = sup
t∈T

f (t)

I General convex functions, for instance,

Γ(f ) =
∫
t∈T

ef (t)dt

I Solutions to differential equations with coefficients driven by
f (t).
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Material Failure – one dimensional example

Physical meaning

I u(x): the shape of the material

I Ou(x): strain

I p(x): pressure

I a(x): material-specific coefficients

1

1
The picture is published at http://www.guillemot-kayaks.com
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Material Failure

I The partial differential equation: x ∈ T{
−O · σ(x) = p(x)
σ(x) = a(x)Ou(x)

I The ordinary differential equation: x ∈ [0, 1]

(a(x)u′(x))′ = −p(x)
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Material Failure – one dimensional example

I Composite material characterized by the tensor a(x)

I Spatial variation: a(x) = ef (x), where f (x) is a Gaussian
process.
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Material Failure

I Question: whether and where the material breaks.

I The conditional distribution of f conditional on the failure.
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The failure probability

I The failure probability

P
(

sup
x∈T
|∇u(x)| > b

)
I The displacement u(x) depends on the process a(x).
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Material Failure – Dirichlet condition

I One dimensional problem: (a(x)u′(x))′ = −p(x)
I Dirichlet condition: u(0) = u(1) = 0

I The solution:

u(x) =
∫ x
0 F (y)a−1(y)dy −

∫ 1
0 F (y )a−1(dy )dy∫ 1

0 a−1(dy )

∫ x
0 a−1(y)dy ,

where F (x) =
∫ x
0 p(y)dy .
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Material Failure – Dirichlet condition

I The strain

u′(x) = a−1(x)

(
F (x)−

∫ 1
0 F (y)a−1(y)dy∫ 1

0 a−1(y)dy

)
= a−1(x)[F (x)− Ef (F (Y ))]

where a−1(x) = ef (x).
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The external force

I Delta external force:
p(x) = δx∗(x), F (x) =

∫ x
0 p(y)dy = I (x ≥ x∗).

I Continuous external force p(x): x∗ = arg supx∈T |p(x)|.
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Theorem: approximation of the Delta function (L. and
Zhou 2011)

I Homogeneous, mean zero, and C 3(T )

I The covariance C (t) = 1− 1
2 t

2 +O(|t|4).

I The external F (x) = I (x ≥ x∗), p(x) = δx∗(x).
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Theorem: approximation of the Delta function (L. and
Zhou 2011)

Let

Z ∼ N(0, 1), H(x) = −x2

2
+ logP(Z ≤ x), κ = supH(x).

Let r = log b− κ. Then, we have the approximation

P
(

sup
x∈[0,1]

|u′(x)| > b
)
∼ D × P(Z > r).
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Key components of the conditional distribution

I Questions about the conditional distribution
I Where does the break occur or arg sup u′(x) =?
I Where does f (x) attain it maximum?
I At what level?
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Theorem: approximation for continuous force (L. and Zhou
2011)

The external force p(x) is a continuously differentiable function.
Then, we have the approximation

P( sup
x∈[0,1]

|u′(x)| > b)

∼ P(|u′(0)| > b) + P(|u′(1)| > b) + P( sup
|x−x∗|<ε

|u′(x)| > 0).
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Exact asymptotic approximation for continuous body force

I Let p(x∗)r−1er−
1
2 = b. Then,

P( sup
|x−x∗|<ε

|u′(x)| > 0) ∼ κ∗ × r−1/2 exp{−r2/2}.

I Let H0r0
−1/2er0 = b. Then,

P(|u′(0)| > b) = κ0 × r0
−1e−r0

2/2

I Let H1r1
−1/2er1 = b. Then,

P(|u′(1)| > b) = κ1 × r1
−1e−r1

2/2
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High dimensional case

I The partial differential equation: x ∈ T{
−O · σ(x) = p(x)
σ(x) = a(x)Ou(x)

with boundary condition that u(∂T ) = 0.

I The elasticity tensor a(x) = eξ(x) and Var(ξ(x)) = σ2.

I Conjecture:

lim
b→∞

logP(maxx∈T |u(x)| > b)

(log b)2
= − 1

2σ2
.
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The change-of-measure-based analysis

I Let P be the original measure.

I The change of measure Q

dQ

dP
=
∫
t∈T

gt(f (t))

ϕt(f (t))
h(t)dt

where ϕt(x) is the marginal density of f (t), h(t) is a density
on T , and gt(x) is an alternative density.
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Simulation from the change of measure

I Simulate τ ∈ T
τ ∼ h(t)

I Simulate f (τ) according to gt(x)

I Simulate {f (t) : t 6= γ} given f (τ) under P

I Simulation and computation

20 / 24



Simulation from the change of measure

I Simulate τ ∈ T
τ ∼ h(t)

I Simulate f (τ) according to gt(x)

I Simulate {f (t) : t 6= γ} given f (τ) under P

I Simulation and computation

20 / 24



Simulation from the change of measure

I Simulate τ ∈ T
τ ∼ h(t)

I Simulate f (τ) according to gt(x)

I Simulate {f (t) : t 6= γ} given f (τ) under P

I Simulation and computation

20 / 24



Simulation from the change of measure

I Simulate τ ∈ T
τ ∼ h(t)

I Simulate f (τ) according to gt(x)

I Simulate {f (t) : t 6= γ} given f (τ) under P

I Simulation and computation

20 / 24



The interpretations

I The distribution h(t)

I The distribution gt(x)
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The choices of h and gt

I Let u = log b

I Random index

h(t) =
P(f (t) > u − 1/u)∫

T P(f (t) > u − 1/u)dt
∝ P(f (t) > u − 1/u)

I The distribution gt(x) =
I (x>u−1/u)

P(f (t)>u−1/u) ϕt(x)
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The choices of h and gt

I The likelihood ratio:

dQ

dP
=

mes(Au−1/u)∫
T P(f (t) > u − 1/u)dt

where Aγ = {t : f (t) > γ}.
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Summary

I Stochastic partial differential equations and their physical
interpretation.

I Gaussian processes are used to model the spatial variations.

I Asymptotic approximation.

I Simulation.
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